^вверх

Next Sound

Статьи и обзоры nachodki.ru

Наши Статьи

,

Увеличение максимально допустимого обратного напряжения VRRM при последовательном включении выпрямительных диодов

Так как диоды, рассчитанные на высокое обратное напряжение (которое может достигать 1700 В при применении силового трансформатора, используемого в рассматриваемом примере) не являются широко распространенными компонентами, то в высоковольтном источнике питания с дроссельным сглаживающим фильтром используются три последовательно включенных выпрямительных диода, позволяющие троекратно увеличить значение максимально допустимого обратного напряжения VRRM каждого из них. Однако, при этом необходимо использовать выравнивающие напряжения конденсаторы, включенные параллельно каждому диоду, для того, чтобы обеспечить приложение к ним равных по величине обратных напряжения. Аргументы для такого подхода совершенно аналогичны тем, которые использовались при рассмотрении действия выравнивающих напряжения резисторов при последовательном включении электролитических конденсаторов. Выпрямительные диоды включены последовательно, следовательно, по ним протекает одинаковый по величине ток, поэтому можно принять, что одинаковый ток обеспечит одинаковые по величине заряды (Q It). Обратное напряжение, которое будет приложенное к каждому из диодов, во многом определяется величиной барьерной емкости его перехода в момент выключения (Q = CV), а также удельным сопротивлением самого перехода (влияющим на рассасывание неосновных носителей в переходе при выключении диода), однако эти значения могут изменяться от элемента к элементу, что будет приводить к изменениям в величине обратного напряжения. Автор произвел замеры емкости Сreverce диодов серии STTA512D, которое составило порядка 600 мкФ. С целью подавить влияние от возможного разброса этой величины используются пленочные пластиковые шунтирующие конденсаторы с емкостью 10 нФ, которые должны гарантировать, что ни на одном из выпрямительных диодов величина обратного напряжения не превысит значения максимально допустимого обратного напряжения VRRM.

Принципиальная схема улучшенного источника питания µ-повторителя  блока частотной коррекции RIAA каскада предусилителя

Рис. 6.48 Принципиальная схема улучшенного источника питания µ-повторителя блока частотной коррекции RIAA каскада предусилителя

При выключении диодов через них проходит ток утечки (обратный ток диода), оцениваемый значением в несколько миллиампер. С другой стороны, это явление можно было бы рассматривать, как схему параллельного включения идеального по своим характеристикам диода с сопротивлением утечки. После того, как диоды оказались включенными последовательно, принцип действия делителя напряжения мог бы вызвать появление на неуравновешенных по величине сопротивлениях утечки падения напряжений, которые могли бы превысить по величине максимально допустимые значения обратного напряжения VRRM диодов. Проблема может быть решена либо путем согласования по величине токов утечки используемых в схеме диодов, либо включением резистора параллельно каждому диоду, который пропускал бы ток, в несколько раз превышающий ожидаемый ток утечки. В рассматриваемой схеме к каждому из диодов в закрытом состоянии приложено напряжение 589 В, поэтому через резистор с сопротивлением 1 МОм протекает ток величиной 589 мкА, который намного превосходит ток утечки диода. К сожалению, каждый резистор должен иметь мощность рассеяния 2 Вт, бесполезно выделяя ее в виде тепла.

Компенсация разбаланса сопротивлений полуобмоток трансформатора, имеющих отвод от средней точки

Трансформатор, обмотки которого имеют отвод от средней точки, позволяют экономить на количестве диодов и шунтирующих конденсаторах для выпрямителя, но добавляют новые проблемы. Обмотки трансформаторов, в которых выполнен отвод от средней точки, наматываются на каркасе одна на другую, поэтому диаметр внешней полуобмотки всегда несколько больше, чем расположенной внутри, что приводит к несколько большему значению сопротивления этой полуобмотки из-за более длинного провода. Если не учесть разницу в величинах сопротивлений полуобмоток и не компенсировать ее введением внешнего добавочного сопротивления к внутренней полуобмотке трансформатора, то на выходе выпрямителя появится составляющая пульсаций, имеющая частоту сетевого питания, которая при этом не будет достаточно хорошо ослабляться последующим сглаживающим фильтром, рассчитанным на фильтрацию составляющей с удвоенной частотой сети. Этот факт является достаточно неприятным, однако, добавление в схему недорогого резистора, выравнивающего значения сопротивлений обмоток, устраняет этот дефект.

Примечание 1. Задержка включения высокого напряжения (нормально разомкнутые контакты реле) составляет: 41с, при частоте сетевого питания 50 Гц, 34 с при частоте сетевого питания 60 Гц.

Задержка времени включения цепей прохождения звукового сигнала (нормально-замкнутые контакты реле): дополнительно 2с к времени задержки подачи высоковольтного напряжения.

Примечание 2. Как транзистор MJE340, так и интегральный стабилизатор напряжения 317Т серии должны монтироваться с соблюдением тщательной электрической изоляции на соответствующих теплоотводящих радиаторах. В качестве радиаторов можно, например, использовать алюминиевый уголок с толщиной стенки 3 мм.

Примечание 3. Ток подогревателей катодов в режиме пониженного энергопотребления: 234 мА; сопротивление холодной нити накала: 24 Ом; напряжение холодной нити накала: 5,6 В; мощность, выделяющаяся в интегральной микросхеме 317Т серии: 6,9 Вт.

Примечание 4. Напряжение накала в режиме пониженного энергопотребления: 16 В; мощность, выделяющаяся в интегральной микросхеме 317Т серии: 4,4 Вт. Ток разогретых нитей накала: 300 мА; напряжение накала при разогретых катодах: 25,2 В; мощность, выделяющаяся в интегральной микросхеме 317Т серии: 2,9 Вт

Примечание 5. Для обеих логических интегральных микросхем обязательно подключение керамических конденсаторов 100 нФ между выводами 0 В и +5 В.

Схема задержки включения высоковольтного напряжения

В самом начале ламповые выпрямители рассматривались в качестве примера плавного включения ламповых электронных схем (поскольку разогрев вакуумных диодов — кенотронов требует определенного времени). Однако ламповые выпрямители являются дорогостоящими. В отличие от них схемы с использованием полупроводниковых выпрямителей проще, но они обычно подают высоковольтное напряжение в ламповую схему до того, как последняя оказывается подготовленной к работе.

Как и прежде, для того, чтобы плавно подать напряжение питания на высоковольтный трансформатор (что автоматически обеспечит и плавную подачу выпрямленного высокого напряжения в анодные цепи ламп питаемого усилителя), используется твердотельное переключающее реле. Данное реле обеспечивает задержку включения порядка 41с, которая позволяет катодам прогреться от температуры, характерной для режима пониженного энергопотребления, до ее рабочего значения.

Дополнительно к этому обеспечивается выходной сигнал для управления реле, у которого нормально замкнутые контакты включены параллельно входу соответствующего предусилителя. Напряжение на реле подается примерно через 2с после того, как подано высоковольтное напряжение. При выключении питания, это реле замыкает контакты в самом начале падения питающего напряжения. Таким образом, предотвращается появление низкочастотных импульсных помех при включении и выключении, которые могли бы повредить транзисторы, если таковые имеются во вспомогательных цепях усилителя, а также проявились бы в виде щелчков в громкоговорителях.

Рассмотрим работа схемы задержки. Напряжение низковольтного трансформатора выпрямляется по простейшей однополупериодной схеме (используя один из диодов моста низковольтного выпрямителя) и через резистор с сопротивлением 30 кОм (чтобы снизить постоянную составляющую выпрямленного этой схемой тока, протекающего по обмотке трансформатора) подается на логическую схему. Импульсное напряжение, имеющее частоту 50 Гц, ограничивается по амплитуде до значения примерно 5 В с использованием стабилитрона, имеющего рабочее напряжение 4,7 В. Конденсатор, имеющий емкость 10 нФ, фильтрует высокочастотные шумы, которые в противном случае заставляли бы ложно запускаться счетчик импульсов, выполненный на логической интегральной микросхеме серии 4040. Состояние выхода QL счетчика 4040 изменяется от уровня логического нуля (низкий уровень 0 В) до уровня логической единицы (высокий уровень 5 В) после каждых 2048 импульсов (период колебаний импульсного сигнала равен периоду колебаний синусоидального напряжения сетевого питания, поскольку схема выпрямления однополупериодная). Нарастающий фронт положительного импульса инициирует во включенной за ним интегральной микросхеме 74 D-типа подачу логической единицы с ее входа D на выход Q, что, в свою очередь, обеспечивает подачу напряжения на реле высоковольтного напряжения.

Одновременно с этим сигнал с выхода высоковольтного реле поступает на вход D второй половины интегральной микросхемы 74 D-типа. Однако, оно но не поступит на выход этой микросхемы до тех пор, пока состояние выхода QH счетчика 4040 опять не изменится с уровня логического нуля до уровня логической единицы, что произойдет только по истечении времени, равному 128 периодам колебаний сетевого напряжения. Инвертирующий выход используется для включения транзистора типа ВС558В, питающего реле (одного или нескольких), закорачивающих цепи прохождения звукового сигнала на входе усилителя. Реле должны шунтироваться диодами, чтобы предотвратить появление противодействующих (обратно-индуцированных) выбросов, способных повредить задающие транзисторы.

Continue reading
392 Hits

Рабочий режим

Режим пониженного энергопотребления

Режим пониженного энергопотребления задается при закорачивании нижнего резистора цепи с использованием контактов реле. Падение напряжения на токозадающем резисторе в этом режиме определяется выражением:

В результате действия стабилизатора на верхнем резисторе цепи делителя падение напряжения всегда равно 1,25 В. Поэтому падение напряжения на среднем резисторе должно составлять: (1,31056 В — 1,25 В) = 55,63 мВ. Зная падение напряжения на резисторе и величину протекающего по нему тока, можно найти величину его сопротивления:

Точное значение тока, задающего режим пониженного энергопотребления, не является существенным, поэтому можно использовать ближайшее значение сопротивления из ряда номиналов, образующих серию Е24, то есть это будет 51 Ом.

После того, как контакты реле разомкнутся, по токозадающему резистору начнет протекать полный ток, равный 0,298908 А. Падение напряжения при этом токе составит 1,6739 В. Падение напряжения на двух нижних резисторах в этом случае должно составлять: (1,6739 В — 1,25 В) = 0,4239 В, что позволяет найти величину их суммарного сопротивления:

Вклад среднего резистора цепи делителя в это значение составляет 56 Ом, следовательно, сопротивление нижнего резистора составит: (406,9 Ом — 51 Ом) = 355,9 Ом. Ближайшее значение сопротивления, входящего в серию Е24 и равное 360 Ом, задает значение тока, превышающее номинальное на 0,2%, однако, значение сопротивления 357 Ом, входящего в серию Е96 уменьшит отклонение от расчетного значения тока до +0,05%.

Погрешности и неисправности

На практике, основным источником гораздо погрешности является токозадающий резистор с сопротивлением 5,6 Ом. В рассматриваемой схеме на этом резисторе выделяется мощность, равная 0,5 Вт. Даже находясь в абсолютно свободном воздушном пространстве, не ограниченным никакими близкорасположенными деталями, узлами и корпусом, резистор, рассчитанный на мощность рассеяния 0,6 Вт, и на котором фактически выделяется 0,5 Вт мощности, нагрелся бы до достаточно высокой температуры, что привело бы к отклонению его сопротивления от номинала. Поэтому, следует использовать резистор, рассчитанный на более высокую мощность рассеяния. Очевидным кандидатом для такого выбора является плакированный алюминием резистор, закрепленный винтами на охлаждающем радиаторе, однако, найти резистор подобного типа, имеющий допуск на точность изготовления менее 5%, оказывается весьма затруднительным. Более простым (и обеспечивающим необходимую точность) решением является использование десяти более дешевых резисторов с сопротивлением 56 Ом, имеющих допуск на точность изготовления 1 % и рассчитанных на мощность рассеяния 0,6 Вт, которые соединяются параллельно, образуя, таким образом, компонент схемы, имеющий сопротивление 5,6 Ом с величиной отклонения ± 1 % и способный рассеивать 6 Вт мощности.

Для того, чтобы скомпенсировать влияние погрешностей, вносимых при расчете схемы, а так же возникающих за счет существующих допусков на точность изготовления компонентов схемы, можно было бы заменить нижний резистор цепью, составленной из последовательно включенного постоянного резистора с сопротивлением 330 Ом и переменного резистора с сопротивлением 50 Ом. Это не только позволило бы точно задавать величину тока подогревателей при наладке схемы, но также позволило бы упростить расчет схемы, позволяя пренебрегать вкладом тока управляющей цепи в общий ток нагрузки. Однако, вопреки такому, на первый взгляд очевидному подходу, использование переменного резистора категорически не рекомендуется. Переменные резисторы, как правило, отказывают, когда контакты его движка оказываются разомкнутыми, а в данной схеме это привело бы к тому, что стабилизатор включился бы полностью, в результате чего полное напряжение, имеющееся перед входом стабилизатора, оказалось бы приложенным к цепям подогревателей, что вызвало бы в свою очередь катастрофическое увеличение анодных токов всех ламп усилителя.

Контакты реле переключения режимов из номинального рабочего в режим пониженного энергопотребления специально разрабатывались так, чтобы их возможный выход из строя оказался безопасным для схемы. Они устроены таким образом, чтобы при возможной неисправности контакты оказались бы разомкнутыми, что обеспечило бы дальнейшую работу подогревателей катодов при их номинальной рабочей температуре. И наоборот, если бы номинальный рабочий ток подогревателей обеспечивался при замкнутых контактах реле, то неисправность, приводящая к размыканию контактов, вызвала бы чрезмерный перегрев подогревателей катодов при приложении более высокого напряжения, что вызвало бы их последующее повреждение.

Из-за сравнительно более высокой подверженности отказам с катастрофическими последствиями ламповых схем, в которых используется последовательная схема включения цепей подогревателей катодов, стабилизаторы тока в таких цепях должны рассчитываться и собираться с возможно большей тщательностью и аккуратностью.

Выбор силового трансформатора и дросселя низковольтного источника питания для схем с последовательным накалом ламп

При расчете параметров силового трансформатора удобнее рассматривать схему, что называется, с ее выхода, или с ее нагрузки, напряжение на которой примем равным, например 25,2 В. На практике, это напряжение определяется суммой напряжений накала всех ламп при последовательном способе питания подогревателей. Далее следует учесть, что на токозадающем резисторе цепи стабилизатора тока падает напряжение 2 В, также необходимо учесть дополнительное падение напряжения 3 В на интегральном стабилизаторе 317 серии, то есть минимальное значение напряжение на входе схемы стабилизатора должно быть не менее 30 В. Выбранный для схемы дроссель имеет внутреннее сопротивление 1,2 Ом и рассчитан на ток 0,6 А (исходя из требуемого питания двух параллельных цепей последовательно включенных подогревателей катодов ламп). Падение напряжения на дросселе составит 0,72 В, что в итоге потребует на выходе выпрямителя величины постоянной составляющей напряжения порядка 31В. Мостовая схема выпрямления добавит падения напряжения на двух полупроводниковых диодах, хотя использование диодов Шоттки для этих целей снизило бы общее падение напряжения на них до значения примерно 1 В, что в итоге приводит к значению необходимого напряжения 32 В. Учитывая, что постоянная составляющая выпрямленного синусоидального напряжения составляет только 0,9 от среднеквадратического значения входного напряжения, Vin(RMS)на выходных клеммах трансформатора необходимо будет иметь напряжение 36 В среднеквадратического значения. Однако, это значение не будет учитывать возможные колебания напряжения в сети питания, а также возможные изменения напряжения питания цепей подогревателей ламп, поэтому было бы лучше остановиться на величине напряжения 40 В среднеквадратического значения.

Гораздо проще проверить пригодность технических параметров потенциального кандидата на роль дросселя, чем задаваться техническими характеристиками дросселя, который, возможно, так и не будет никогда найден, а потребует индивидуальной разработки. Например, дроссель с переменной индуктивностью серии NOS имеет следующие параметры:

L = 180 мГн, постоянный ток 200 мА,

L = 90 мГн, постоянный ток 1,5 А.

Допуская, что небольшой по величине ток будет потребляться другими элементами схемы низковольтного источника питания, максимальное значение общего тока Itotal peak current

Большей величине постоянного тока дросселя соответствует меньшее значение его индуктивности, следовательно, величина постоянного тока iAC составит:

Это значение значительно меньше, чем максимально допустимое по паспорту дросселя значение 1,5 А, поэтому предлагаемый дроссель удовлетворяет требованиям схемы.

Величина тока в соответствии с техническими характеристиками силового трансформатора относится к среднеквадратическому значению тока (для напряжения синусоидальной формы), поэтому можно разделить амплитудное (или максимальное) значение тока на величину √2, что дает значение 0,71 А. В силу этого использование трансформатора, рассчитанного на мощность 30 Вт, могло бы оказаться вполне достаточным, однако, автор остановил свой выбор на трансформаторе с мощностью 50 Вт, так как последний имел практически такую же стоимость, но при этом обеспечивал меньшую плотность магнитного потока в сердечнике и меньший поток рассеяния, что в свою очередь, снижало наведенные шумы в расположенных рядом цепях схемы.

Требования к трансформатору и дросселю высоковольтного источника питания

Для питания схемы m-повторителя блока частотной коррекции RIAA (напомним, что в качестве примера рассматривается блок питания именно этой аппаратуры) было необходимо напряжение 390 В и ток, примерно равный 80 мА. Для этих целей вполне подходил трансформатор, имеющий вторичную обмотку со средней точкой и напряжениями 525 — 0 — 525 В (для двухполупериодной схемы выпрямления со средней точкой), рассчитанную на токи 250 мА, а также дроссель с индуктивностью 20 Гн, которые когда-то использовались в схеме усилителя Solatron Varipak. Так как схема усилителя Varipak характеризовалась номинальным значением тока 100 мА, то не было никакой необходимости проверять пригодность дросселя по величине номинального тока.

Высоковольтный стабилизатор

В одной из ранних разработок автором использовалась схема параллельной стабилизации высоковольтного напряжения, которая была очень похожа на ту, которая была использована Алленом Райтом (Allen Wright) в его схеме предусилителя, но которая была практически полностью уничтожена в результате выхода из строя подогревателя лампы (и. вследствие этого, прекращения анодного тока), со всей очевидностью подчеркнув важность рассмотрения целиком всей схемы при проектировании каждого отдельного блока.

Параллельные схемы стабилизации являются защищенными от коротких замыканий, однако, они оказываются уязвимы к режиму холостого хода. В случае отсоединения нагрузки параллельно включенный элемент стабилизатора вынужден пропускать по своим цепям весь дополнительный к своему обычному значению ток нагрузки, при этом он должен быть способен рассеивать всю выделяющуюся на нем значительную мощность. Отказ (обрыв) нити накала одной из ламп, подогреватели которых включены по схеме последовательного питания, прекращает подачу питания на все остальные лампы, приводя к их выключению и полному отключению нагрузки высоковольтного источника питания. Таким образом, параллельная схема стабилизации и последовательная схема включения цепей подогревателей ламп не представляют приемлемое сочетание технических решений, особенно в тех случаях, когда необходимый ток высоковольтного источника питания превышает 20 мА.

При изготовлении ламповых стабилизаторов требуются очень высокие затраты. Они могут обладать очень низким уровнем шумов, однако в их схемах требуется применение нескольких источников питания подогревателей, а для усилителя рассогласования в идеале требуется отдельный стабилизированный источник питания для уменьшения дрейфа постоянной составляющей, что еще больше усложняет всю схему. Тем ни менее, ряд разработчиков присягнули на верность ламповым стабилизаторам, но это — дело их профессионального выбора.

В настоящее время автор все еще предпочитает стабилизатор компании, разработчика Maida на интегральной схеме 317Т (неоднократно рассмотренный выше), хотя в него и могут быть внесены незначительные улучшения в цепь делителя напряжений. Ранее в этой цепи рекомендовался для использования металлизированный пленочный резистор с сопротивлением 220 кОм, так как это значение обеспечивало минимизацию тока высокого напряжения и выделяющуюся на резисторе мощность. В настоящее время, когда требуются более высокие значения тока, может использоваться проволочный резистор с сопротивлением 47 кОм (как и сделано в схеме рассматриваемого блока питания, рис. 6.48), при том дополнительном преимуществе, что у него отсутствуют избыточные токи.

Continue reading
861 Hits

Схема улучшенного источника питания

Рассмотренная выше схема источника питания рассчитывалась, когда основными критериями, в основном, являлись минимальные стоимостные показатели, тогда как представленный ниже источник питания разрабатывался для того, чтобы иметь минимальный уровень шумов, позволяющий использовать его для питания высококачественного предусилителя с блоком частотной коррекции, соответствующим стандарту RIAA.

Самой важной характеристикой источника питания для предусилительного каскада является максимально низкий уровень шумов. Это не означает, что необходимо обеспечить только очень высокую нечувствительность схемы к внешним источникам шумов (таких, например, как радиопомехи сетевого питания), но необходимо также обеспечить незначительный уровень собственных шумов схемы.

Самым главными причинами, которые приводят к генерации собственных шумов, являются процессы, происходящие при выпрямлении и сглаживании сетевого напряжения, особенно, если на выходе выпрямителя используются конденсаторная схема фильтрации. В силу этого, схемы источников питания, на выходе выпрямителей которых используются фильтрующие дроссели, в подавляющем большинстве случаев оказываются предпочтительнее. Высоковольтные источники питания с дроссельным фильтром являются общепринятыми, однако, использование таких схем для низковольтных источников питания не получило широкого распространения, поэтому они требуют дополнительного рассмотрения относительно их применения. При этом следует учитывать, что источник питания должен рассматриваться и конструироваться, как единое целое.

Примечание. Как транзистор MJE340, так и интегральный стабилизатор напряжения 317Т серии должны монтироваться на соответствующих теплоотводящих радиаторах с соблюдением тщательно выполненной электрической изоляции. В качестве радиаторов можно использовать, например, алюминиевый уголок с толщиной стенки 3 мм.

Низковольтная часть улучшенного блока питания

µ-повторитель, входящий в состав большинства предусилителей (например, блока частотной коррекции фирмы RIA А), должен, без всяких сомнений, питаться от низковольтного источника питания с дополнительным внешним смещением, которое должен быть введен в схему дополнительно к низковольтному напряжению накала. Такая необходимость вызвана тем, что катод одной из ламп μ-повторителя находится под повышенным потенциалом относительно земли. Это приводит к необходимости иметь два различных низковольтных источника питания и использовать в качестве нижних (по схеме) ламп μ-повторителя типы ламп, приведенные в табл. 6.6.

Таблица 6.6
Тип лампы Ток подогревателя Iheater, мА
ЕС8010 280
6J5-GT 300
12В4-А 300

Резистор с сопротивлением 315 Ом, подключенный параллельно выводом подогревателя лампы ЕС8010, устанавливает значение тока подогревателя равным 300 мА. Это предполагает, что будет возможно использовать вариант последовательного включения цепей подогревателей ламп. Вариант использования стабилизатора тока для питания подогревателей ламп при их последовательном включении, имеет ряд преимуществ по сравнению с обычным вариантом стабилизированного источника питания, использующимся для питания подогревателей ламп стандартным постоянным напряжением накала 6,3 В:

• стабилизатор тока имеет более высокую эффективность работы;

• стабилизаторы тока гораздо лучше защищены против случайно возникающих режимов короткого замыкания или холостого хода;

• исключается термический удар подогревателей ламп при их включении;

• отдельные резисторы цепей подогревателей могут использоваться как составляющие элементы фильтров радиопомех для отдельных каскадов;

• паразитные сопротивления проводов цепей подогревателей перестают влиять на работу ламп (в схеме сложного предусилительного каскада, в котором используются лампы фирмы О ctal, потребляющие ток более 5 А при напряжении накала 6,3 В, потребуются провода, имеющие достаточно большое сечение);

• напряжение на подогревателе каждой лампы должно слегка превышать напряжение на ее катоде, чтобы предотвратить возникновение паразитного диодного эффекта между вольфрамовым подогревателем и катодом лампы.

Недостатками последовательной схемы питания цепей подогревателей ламп являются:

• обрыв нити накала подогревателя любой из ламп будет носить катастрофический характер, так как прекратиться накал всех ламп и стабилизатор тока окажется на холостом ходу. Написав это, автор немедленно подумал о том, что в его практике за 30 лет наблюдались всего два случая, связанных с неисправностью цепи накала, (причем, причиной одного из них был сам автор, допустивший превышение предельного значения напряжения между катодом и подогревателем Vhk(max)). К сожалению, второй случай был связан с последовательно включенными цепями подогревателей ламп и последствия вызванных им повреждений были просто ужасными;

• теоретически не исключается температурный дрейф. При нагреве нити накала вольфрамового подогревателя ее сопротивление возрастает (этот закон справедлив для всех металлов) Так как выделяющаяся мощность Р = I2R, то увеличивающееся сопротивление вызывает увеличение выделяющейся мощности в проводнике. На практике, изменение сопротивления с температурой не столь уж велико и выделяющаяся мощность в большей мере зависит от второй степени протекающего тока, I2, следовательно, стабилизированный по току источник питания имеет более стабильные температурные характеристики.

Схема стабилизатора тока

Как и в предыдущем случае, также хотелось бы иметь возможность задавать для подогревателей ламп режим пониженного энергопотребления, однако, так как для подогревателей ламп затруднено применение закона Ома (из-за температурного изменения их сопротивления при работе лампы), то невозможно непосредственно рассчитать необходимую величину тока, несмотря даже на то, что известно напряжение, приложенное к нити накала катода, должно будет составлять 63% от значения номинального рабочего напряжения. Понадобилось выполнить целую серию экспериментов, чтобы установить, что работа цепи накала при величине тока, составляющего 78% от номинального значения, будет эквивалентна режиму, при котором к цепи накала лампы с косвенным подогревом приложено 63% номинального значения напряжения.

При последовательном включении цепей подогревателей ламп полностью исключается вариант параллельного соединения подогревателей отдельных групп ламп, поэтому требуется один стабилизированный источник тока на 300 мА, питающий одну общую цепь накала ламп. Многоцелевой интегральный стабилизатор 317 серии идеально подходит для этой цели. Только вместо того, чтобы поддерживать постоянным напряжение 1,25 В на части параллельно включенного делителя напряжения, он теперь должен бороться за поддержание величины этого напряжения на последовательно включенном токочувствительном резисторе (рис. 6.47а).

Для того, чтобы стабилизатор работал правильно, падение напряжения на токочувствительном резисторе должно составлять 1,25 В даже в том случае, когда по цепям подогревателей ламп проходит 78% номинального тока в режиме пониженного энергопотребления. Следовательно, сопротивление токозадающего элемента Rsense должно составлять:

Использование интегральной микросхемы 317 серии в качестве стабилизатора тока

Рис. 6.47 Использование интегральной микросхемы 317 серии в качестве стабилизатора тока

Нет ничего удивительного в том, что полученное значение не совпадает с величиной сопротивления, входящего в стандартные серии номиналов, однако, за счет увеличенного напряжения выпадения из режима стабилизации и снижения эффективности работы, можно использовать более высокое значение сопротивления. Большее значение сопротивление вызовет увеличенное по сравнению с напряжением 1,25 В падение напряжения при том же требуемом значении тока. Однако оно может быть уменьшено обратно до значения 1,25 В за счет резистора, включенного параллельно с токозадающим резистором. В силу вышесказанного можно использовать ближайшее по величине сопротивление из ряда стандартной серии, которое будет равно 5,6 Ом.

В режиме пониженного энергопотребления на резисторе с сопротивлением 5,6 Ом падение напряжения составит 1,31 В, а при номинальном рабочем режиме (токе 300 мА) падение напряжения составит 1,68 В. Необходимо использовать делитель напряжения, который представлял бы компромиссное решение для двух рассматриваемых режимов (рис. 6.47 б).

Для того, чтобы рассчитать параметры цепи делителя, необходимо слегка видоизменить схему и предположить, что напряжение на выводе Выход (OUT) составляет 0 В (рис. 6.47 в).

При работе интегрального стабилизатора напряжение на его выводе Настройка (ADJ) должно быть равно — 1,25 В. Если предположить, что в цепи делителя протекает ток, равный 1 мА, то величина верхнего резистора должна составлять 1,25 кОм. Однако это значение сопротивления не входит в ряд стандартных значений серии, поэтому выбор ограничивается значением 1,2 кОм, что, в свою очередь, определяет новое значение тока Ichain,протекающего в делителе, которое может быть рассчитано в соответствии с выражением:

В цепь делителя с вывода Настройка (ADJ) поступает ток, равный 50 мкА, следовательно, по нижнему резистору протекает ток, равный (1,04167 мА + 50 мкА) = = 1,019167 мА. Ток цепи суммируется с током нагрузки, следовательно, величина необходимого тока, протекающего по токозадающему резистору, уменьшается до значения, которое определяется разностью: (300 мА — 1,09167 мА) = 298,908 мА.

Continue reading
437 Hits

Особенности источников смещения подогревателей ламп, находящихся под повышенным потенциалом относительно корпуса

Низковольтный источник питания с повышенным потенциалом относительно корпуса необходим для применения в любых цепях, в которых напряжение катода значительно отличается от нулевого значения. Источник питания с повышенным потенциалом необходим потому, что токи утечки генерируют напряжение шума на сопротивлении между катодом и подогревателем ламп Rhk(hot) Для уменьшения величины напряжения шумов существует два способа:

• следует избегать применения ламп, характеризующихся низким значением сопротивления Rhk(hot)В ряде случаев это труднодостижимо, однако, необходимо использовать измеритель характеристик ламп, или специально изготовленный тестер для отбраковки негодных экземпляров. Так как наиболее частой причиной низкого значения Rhk(hot) является пылевидные или иные частички, образующиеся в колбе в процессе изготовления ламп, то они часто могут выжигаться при увеличении напряжения накала ламп примерно на одну треть и контролем за изменением величины Rhk(hot) без пропускания через лампу анодного тока. Сопротивление начнет падать и в момент, когда изменение сопротивления прекратится, необходимо будет выключить подогрев катодов, после чего нить подогревателя должна остыть. Если повезет, то при повторном измерении Rhk(hot) окажется, что его величина значительно улучшится. Следует помнить, что увеличение напряжения питания подогревателей катодов может легко повредить катод с оксидным покрытием, однако, если у лампы были плохие характеристики, то терять особо нечего;

* если величина постоянного напряжения, приложенного к изоляции катод-подогреватель, который имеет высокие токи утечки, будет минимальной, то и токи утечки станут минимальными, а с ними уменьшатся и шумы.

Например, возможен случай, когда необходимо применение двух низковольтных источников питания для цепей подогревателей: один предназначен для катодов, напряжение на котором равно приблизительно нулевому значению, а второй источник предназначен для ламп, напряжение на катодах которых составляет примерно 130 В.

В одном из таких усилителей, разработанном Американской радиокорпорацией RCA, требуется подавать на подогреватели разных ламп (на оба вывода) дополнительное постоянное смещение относительно корпуса на +40 В и +170 В (рис. 6.45). Так как от этих источников смещения практически не будет потребляться никакой ток, для них необходим первичный источник переменного тока с низким сопротивлением и соответствующей фильтрацией.

Схема THINGY, обеспечивающая наложение сглаженного постоянного  напряжения на цепи подогревателей ламп

Рис. 6.45 Схема THINGY, обеспечивающая наложение сглаженного постоянного напряжения на цепи подогревателей ламп

Схема, приведенная на рис. 6.45 подключается параллельно выходу высоковольтного источника питания и представляет собой два эмиттерных повторителя, выходные напряжения которых задаются делителем напряжения с отводами. Схема очень некритична к величинам используемых компонентов, очень легко рассчитывается и видоизменяется. Так как приходится иметь дело с относительно высокими напряжениями, то можно пренебречь падением напряжения между базой и эмиттером Vhe открытых транзисторов и считать, что выходные напряжения совпадают с напряжениями в точках отводов делителя напряжения. Если пренебречь величиной базового тока и приблизительно считать, что ток протекающий по цепи делителя напряжения будет равен 1 мА, то на каждые 1 кОм сопротивления резисторов будет приходиться падение напряжения, равное 1 В. Таким образом, если необходимо значение напряжения 40 В на нижнем выходе схемы, то для величины нижнего резистора окажется вполне достаточным величина сопротивления 39 кОм. Если напряжение на верхнем выходе схемы должно составлять 170 В, то падение напряжения на среднем резисторе составит: (170 В — 40 В) = 130 В и величина сопротивления 130 кОм окажется вполне достаточным. Если высоковольтное напряжение составляет, например, 390 В, то на верхнем резисторе падение напряжения должно составлять: (390 В — 170 В) = 220 В, что потребует использования резистора с сопротивлением 220 кОм.

Несмотря на то, что схема фактически только задает требуемый положительный потенциал на внешней цепи и эта внешняя цепь совершенно не потребляет из нее ток, в каждом транзисторе должен протекать незначительный по величине коллекторный ток. Однако величина этого тока будет очень мала, поэтому значения, находящиеся между 1 — 2 мА окажутся вполне приемлемыми. Если установить значение коллекторного тока 1с = 2 мА, то величина сопротивления эмиттерного резистора нижнего транзистора должна будет равняться частному отделения напряжения 40 В на ток 2 мA, то есть 20 кОм.

Можно было бы соединить коллектор этого транзистора непосредственно с эмиттером верхнего транзистора, однако, введение резистора коллекторной нагрузки улучшит подавление шума в цепи и уменьшит выделяемую в транзисторе мощность. Величина сопротивления не грает совершенно никакой роли, но если для нижнего транзистора задать значение напряжения между коллектором и эмиттером Vceравным 15 В, то напряжение на его коллекторе составит (40 В + 15 В) = 55 В. Напряжение на эмиттере верхнего транзистора составляет 170 В, поэтому напряжение на резисторе коллекторной нагрузки должно составлять: (170 В — 55В)= 115 В. Так как ток через транзистор равен 2 мА, то его сопротивление составит (115 В: 2 мА) = 57,5 кОм. Ближайшее стандартное значение сопротивления 56 кОм окажется вполне подходящим для этой цели. Преимущество от введения в схему резистора коллекторной нагрузки состоит в том, что он снижает напряжение Vce (что также приводит к снижению выделяющейся мощности на транзисторе), и улучшает фильтрацию.

Для верхнего транзистора также необходим резистор коллекторной нагрузки. Если опять принять значение Vce равным 15 В, то напряжение на коллекторе верхнего транзистора должно составить (170 В + 15 В) = 185 В. Высоковольтное напряжение составляет 390 В, следовательно падение напряжения на верхнем резисторе коллекторной нагрузки составит (390 В — 185 В) = 205 В. Ток через резистор составляет 2 мА, поэтому величина его сопротивления составит: (205 В : 2 мА) = 202,5 кОм. То есть резистор с сопротивлением 100 кОм вполне подойдет. Падение напряжения 206 В на сопротивлении 100 кОм приведет к значению мощности 0,42 Вт, рассеиваемой на этом резисторе, поэтому потребуется использовать резистор, рассчитанный на мощность рассеяния 2 Вт.

Фильтрация осуществляется за счет использования фильтрующего конденсатора, но установленного не между базой и землей что потребовало бы применения компонента, рассчитанного на высокое рабочее напряжение, а между базой и коллектором транзистора. Для нижнего по схеме транзистора усиление в цепи коллектора составляет: Av = —RC/RE = — (56 кОм: 20 кОм) = — 2,8. То есть эффект Миллера приводит к увеличению величины емкости конденсатора в 2,8 раза, поэтому эффективное значение емкости конденсатора составит 3,8 мкФ. Входное сопротивление со стороны базовой цепи транзистора примерно равняется выходному сопротивлению эквивалентной схемы Тевенина для резисторной цепи, поэтому частота среза фильтра составит 1,5 Гц. Для нижнего эмитерного повторителя два фильтра с частотами среза 1,5 Гц оказываются включенными каскадно, что приводит к еще большему ослаблению уровня шума. Величина емкости конденсатора совершенно не является критичной.

Если в этом есть необходимость, можно не ограничиваться двумя рассмотренными выходами, поскольку дополнительные выходные напряжения могут быть легко образованы путем последовательного включения еще нескольких аналогичных секций. Каждая из добавляемых секций вносит свою долю в общую фильтрацию схемы, поэтому можно просто увеличить количество секций для увеличения коэффициента ослабления шума. Выходное сопротивление схемы составляет менее 2 кОм, хотя дополнение одного транзистора другим, с образованием составного транзистора, могло бы еще сильнее снизить выходное сопротивление рассмотренной схемы.

Автор некоторое время пребывал в замешательстве, размышляя, как бы ему подобрать поточнее название для этой схемы, однако, по здравому размышлению, он вскоре решил, что она представляет собой Транзисторную Разветвленную схему питания Подогревателей с Защитой от Шумов. Аббревиатура названия в английской оригинальной транскрипции будет выглядеть просто устрашающе: THINGY, но она отражает именно то, что означает.

Составление окончательной схемы блока питания

После того, как были рассчитаны отдельные блоки низковольтного и высоковольтного источников питания, наступил момент их объединения в единую схему с использованием нескольких реле и трансформаторов. Для высоковольтного блока питания понадобится трансформатор с напряжением вторичной обмотки 240 В, а для низковольтных блоков понадобится понижающий трансформатор с двумя вторичными обмотками на напряжения по 9 В каждая. В зависимости от возможностей использовать различные модификации силовых трансформаторов конкретная схема источника питания может быть различной. Пример схемы блока питания (рис. 6.46).

На входе силовых трансформаторов (то есть со стороны сети) следует добавить фильтр радиопомех, который образован металло-оксидным варистором (нелинейным резистором) на 130 Дж, двух ВЧ дросселей, намотанных на одном ферритовом сердечнике, и двух конденсаторов класса Х2. Конденсаторы класса Х2 являются единственными типами конденсаторов, которые могут официально использоваться для включения между фазным проводом и проводом нейтрали в сетях питания (основной причиной этого является особая конструкция конденсаторов, обеспечивающая абсолютную электробезопасность их применения). Если используются силовые трансформаторы, имеющие электростатические экраны, то выводы экранов должны быть подключены непосредственно к шасси аппаратуры.

Объединенная схема высоковольтного и низковольтного источников  питания, включающая режим пониженного энергопотребления и переключение сетевого питания

Рис. 6.46 Объединенная схема высоковольтного и низковольтного источников питания, включающая режим пониженного энергопотребления и переключение сетевого питания

Переключающее реле одновременно подает напряжение сетевого питания на высоковольтный трансформатор и вспомогательное оборудование. Второе, вспомогательное, реле служит для переключения низковольтных стабилизаторов напряжения из режима пониженного энергопотребления в основной рабочий режим. Было бы совсем неплохо использовать для этих целей четырехполюсное реле, даже в том случае, когда в наличии имеются всего два низковольтных источника питания, так как, если в обозримом будущем возникнет необходимость добавить в схему еще один источник питания, то контакты реле для него будут уже наготове. Переключение источников питания из режима пониженного энергопотребления в стандартный режим энергоснабжения осуществляется подключением к земле нижнего плеча катушки каждого реле (хотя многие переключающее реле являются в действительности полупроводниковыми приборами, которые не имеют катушек). Это означает, что несглаженное низковольтное напряжение не поступает в составной кабель, который соединяет предусилитель с его источником питания и исключает наводку шумов.

Continue reading
374 Hits

Высоковольтный выпрямитель и стабилизатор

В отличие от низковольтных источников питания напряжение вторичной обмотки трансформатора уже известно (230 В), поэтому расчет схемы стабилизатора напряжения должен будет производиться, исходя из этого значения несглаженного высоковольтного напряжения, а не в обратном порядке.

Мостовой выпрямитель будет заряжать накопительный конденсатор до напряжения 325 В. Хотя существуют герметизированные схемы-сборки мостовых выпрямителей, предназначенные для таких напряжений, все-таки безопаснее будет использовать дискретные полупроводниковые диоды, так как это позволит использовать увеличенные расстояния между выводами и уменьшит риск случайно закоротить выводы выпрямителя. Если принято решение использовать дискретные диоды, то следует использовать быстродействующие диоды с малым временем восстановления, такие, например, как RHRD4120 или STTA512D (предельное значение обратного напряжения VRRM составляет 1200 В). Эти диоды характеризуются как меньшими значениями токов выброса, так и меньшей их длительностью по сравнению со стандартными диодами с р-n переходами и, следовательно, меньшим уровнем шумов. Еще лучше было бы использовать диоды Шоттки, изготовленные из карбида кремния, для которых значение VRRM составляет 600 В, и которые стали доступными для применения в последнее время (например SDO1060). Если необходимо использовать диоды с напряжением VRRM > 1500 В, но со значением тока IDC < 500 мА, то могут оказаться полезными небольшие диоды, например BY228, которые первоначально предназначались для использования в качестве демпфирующих диодов (или гасящих диодов по номенклатуре изделий США) в схемах строчной развертки телевизоров. В рассматриваемых схемах, как правило, необходимы не очень высокие значения непрерывно потребляемого тока (около 100 мА), поэтому выбор будет остановлен на элементах с наиболее низкими значениями рабочих токов, но превышающих указанное значение, так как диоды, которые рассчитаны на более высокие значения токов всегда имеют меньшее быстродействие и более высокий уровень шумов.

Максимальное рабочее напряжение разрабатываемого стабилизатора напряжения должно составлять 300 В, тогда как максимальное напряжение на накопительном конденсаторе выпрямителя составит 325 В. Следовательно можно допустить суммарное падение напряжения 25 В, вызванное падениями напряжений на самом стабилизаторе, полупроводниковых диодах и пульсаций напряжения на конденсаторе. Если применить вновь ранее уже использовавшийся критерий, в соответствии с которым для напряжения пульсаций принималось значение 5%, то величина напряжения пульсаций составит примерно 17 В. Однако, падение напряжения в 17 В за счет пульсаций будет гораздо больше того значения от общей величины в 25 В, что можно было бы допустить с учетом дополнительных падений напряжения на других элементах. Поэтому было бы совсем неплохо уменьшить это значение до 10 В, либо еще меньше. В силу этого, идеальным для использования оказался бы накопительный конденсатор с емкостью 220 мкФ и низким значением эквивалентного последовательного сопротивления. Следует отметить, что такой конденсатор, заряженный до 325 В запасет на своих обкладках значительную энергию, поэтому при проверке цепей схемы с таким конденсатором надо проявлять особо высокую осторожность.

После вышеизложенных рассуждений можно приступить к рассмотрению схемы стабилизатора, начиная со схемы делителя напряжения (рис. 6.44).

Если по цепи делителя пропустить ток величиной 5 мА, то на нижнем резисторе падение напряжения должно составить примерно 300 В, поэтому понадобится резистор с сопротивлением 60 кОм и мощностью рассеяния 1,5 Вт. Если вместо этого резистора использовать другой, например, имеющий сопротивление 220 кОм и мощность рассеяния 2 Вт, то на этом резисторе будет выделяться мощность всего 0,4 Вт, которая оказывается вполне допустимой. Далее, такая замена дает и другое преимущество, заключающееся в том, что из-за того, что сопротивление резистора верхнего плеча делителя должно возрасти, то эквивалентное сопротивление Тевенина также увеличится, поэтому понадобится конденсатор, который шунтирует вывод Настройка (ADJ) на землю, с меньшим значением емкости. Так как цепь смещения не потребляет ток 5 мА(минимальное значение тока нагрузки, обеспечивающее правильное функционирование интегрального стабилизатора напряжения 317 серии), отсутствие нагрузки на выходе стабилизатора напряжения вызовет увеличение выходного напряжения. Однако лампы, для которых осуществляется предварительный подогрев катодов в режиме пониженного энергопотребления, будут всегда обеспечивать необходимую нагрузку стабилизатора, а поэтому данная проблема не окажется существенной.

Практическая схема источника стабилизированного напряжения на 300 В

Рис. 6.44 Практическая схема источника стабилизированного напряжения на 300 В

Примечание. Как транзистор MJE340, так и интегральный стабилизатор напряжения 317Т серии должны монтироваться с применением тщательно выполненной электрической изоляции на соответствующих теплоотводящих радиаторах. В качестве радиаторов можно использовать алюминиевый уголок с толщиной стенки 3 мм.

По нижнему резистору с сопротивлением 220 кОм протекает ток величиной 1,358 мА, причем ток 50 мкА является током смещения, протекающим через вывод Настройка интегрального стабилизатора напряжения 317 серии. По резистору верхнего плеча будет протекать, следовательно, ток 1,308 мА, который должен вызвать на нем падение напряжения 1,25 В. Таким образом, величина сопротивления верхнего резистора должна будет составить 955,7 Ом. Однако точность задания величины опорного напряжения интегрального стабилизатора 317 серии составляет 4%, поэтому есть небольшой допуск на величину сопротивления указанного резистора. Можно было бы использовать для подгонки переменный резистор, однако, их надежность гораздо меньше, чем у постоянных резисторов, а отказ одного из компонентов схемы с высоковольтными кремниевыми приборами может привести практически к катастрофическим последствиям. Более безопасным вариантом окажется использование постоянного резистора со стандартным значением сопротивления 1 кОм, но при этом надо предусмотреть место для установки дополнительного параллельно включаемого резистора, точная величина которого будет подбираться при настройке всей схемы, так называемый настраиваемый при регулировке элемент (в западной литературе часто обозначается, как АОТ).

Перед тем, как собирать схему, необходимо замерить и записать точное значение сопротивления резистора, обозначенного в схеме, как 220 кОм, мощность 2 Вт (так как вполне возможно, что его действительная величина будет немного отличаться от паспортной и составит, например, 221 Ом). После сборки схемы может оказаться, что выходное напряжение будет составлять, например, 290 В. Благодаря цепи делителя напряжения падение напряжения на резисторе 220 кОм должно составлять 288,75 В, поэтому величина протекающего по нему тока составит 1,307 мА. Для определения величины тока в верхнем резисторе необходимо из этого значения тока вычесть собственный ток смещения стабилизатора напряжения, равный 50 мкА (после чего величина тока верхнего резистора составит 1,257 мА). Умножение полученного значения тока на сопротивление 1 кОм верхнего резистора даст величину опорного напряжения (1,257 В)

После этого можно продолжить работу по настройке схемы. Если разделить напряжение 298,74 В на сопротивление 221 кОм, то получится ток, равный 1,352 мА. После этого надо вычесть ток смещения, равный 50 мкА, что даст значение 1,302 мА и разделить на него величину опорного напряжения 1,257 В. Результат деления даст требуемую величину сопротивления, равную 965,6 Ом. Включение резистора с сопротивлением 27 кОм параллельно с уже имеющимся резистором 1 кОм даст точное значение высоковольтного напряжения 300 В. Хотя описанный метод и кажется очень усложненным и нудным, он гарантирует гораздо более высокую степень безопасности по сравнению с использованием подстроечного переменного резистора.

Эквивалентное сопротивление Тевенина относительно вывода Настройка стабилизатора составляет примерно 950 Ом, что требует использования шунтирующего на землю конденсатора с емкостью 1,5 мкФ. Такой конденсатор очень дорог и занимает большой объем (рабочее напряжение 400 В), поэтому величина емкости обычно уменьшается до 470 пФ и используется соответствующий по типу стандартный конденсатор.

В рекомендациях по применению, которые заполонили технические паспорта этой группы стабилизаторов напряжения, требуется устанавливать резистор между эмиттером последовательно включенного транзистора и интегральным стабилизатором 317 серии, чтобы ограничить ток короткого замыкания. В других схемах, в частности, предложенной, Дж. Дж. Курцио (J. J. Curcio) также сохраняется данный резистор по целому ряду причин, хотя его величина часто уменьшена для снижения падения напряжения на нем. Введение подключенного к земле конденсатора на выходе стабилизатора обеспечивает ВЧ фильтрацию, что улучшает устойчивость работы стабилизатора напряжения. Некоторым недостатком такого варианта можно считать, что в этом случае будет отсутствовать возможность спасительного для стабилизатора закорачивания на землю возможных токов короткого замыкания.

Резистор с сопротивлением 31 кОм, включенный последовательно со стабилитроном с рабочим напряжением 15 В, задает ток стабилитрона. Для снижения шумов и максимальной устойчивости ток стабилитрона должен превышать значение 5 мА. Известно, что на выходе стабилизатора напряжение составляет 300 В, поэтому напряжение на верхней точке стабилитрона должно будет составлять 315 В. При величине тока стабилизатора 100 мА, на накопительном конденсаторе напряжение пульсаций составит примерно 5 В двойного амплитудного (пик-пикового) значения, поэтому среднее значение постоянного напряжения составит: (339 — 2,5) В = 336,5 В. Следовательно, напряжение на резисторе с сопротивлением 31 кОм составит (336,5 В — 315В), а ток, протекающий через стабилитрон, составит 7,2 мА. Поэтому, если возникнет необходимость изменить напряжение, поступающее на стабилизатор напряжения, то величина сопротивления этого резистора должна быть пересчитана заново, чтобы обеспечить необходимое значение тока стабилитрона.

Continue reading
527 Hits

COPYRIGHT 20013  NEXT SOUND